Double metric, generalized metric, and -deformed double field theory

نویسندگان

  • Olaf Hohm
  • Barton Zwiebach
چکیده

Citation Hohm, Olaf, and Barton Zwiebach. "Double metric, generalized metric, and-deformed double field theory. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We relate the unconstrained " double metric " of the " α 0-geometry " formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b-field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α 0 and to all orders in fields, the deformed gauge transformations are Green-Schwarz–deformed diffeomorphisms. We also prove that to first order in α 0 the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed point theory in generalized orthogonal metric space

In this paper, among the other things, we prove the existence and uniqueness theorem of fixed point for mappings on a generalized orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point of Cauchy problem for the first order differential equation.

متن کامل

On the Riemann tensor in double field theory

Double field theory provides T-duality covariant generalized tensors that are natural extensions of the scalar and Ricci curvatures of Riemannian geometry. We search for a similar extension of the Riemann curvature tensor by developing a geometry based on the generalized metric and the dilaton. We find a duality covariant Riemann tensor whose contractions give the Ricci and scalar curvatures, b...

متن کامل

Double Field Theory of Type II Strings

We use double field theory to give a unified description of the low energy limits of type IIA and type IIB superstrings. The Ramond-Ramond potentials fit into spinor representations of the duality group O(D,D) and field-strengths are obtained by acting with the Dirac operator on the potentials. The action, supplemented by a Spin+(D,D)covariant self-duality condition on field strengths, reduces ...

متن کامل

Generalized Metric Formulation of Double Field Theory on Group Manifolds

We rewrite the recently derived cubic action of Double Field Theory on group manifolds [1] in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all th...

متن کامل

Orthogonal metric space and convex contractions

‎In this paper, generalized convex contractions on orthogonal metric spaces are stablished in whath  might be called their  definitive versions. Also, we show that there are examples which show that our main theorems are  genuine generalizations of Theorem 3.1 and 3.2 of [M.A. Miandaragh, M. Postolache and S. Rezapour,  {it Approximate fixed points of generalized convex contractions}, Fixed Poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016